A novel square planar N_4^{2-} ring with aromaticity in BeN₄

Cite as: Matter Radiat. Extremes 7, 038401 (2022); doi: 10.1063/5.0084802 Submitted: 10 January 2022 • Accepted: 13 March 2022 • Published Online: 4 April 2022

Jiani Lin,^{1,2} Fangxu Wang,³ Qi Rui,³ Jianfu Li,^{1,a)} Qinglin Wang,⁴ and Xiaoli Wang^{1,a)}

AFFILIATIONS

¹School of Physics and Electronic Information, Yantai University, Yantai 264005, People's Republic of China

²Beijing Computational Science Research Center, Beijing 100193, People's Republic of China

³School of Physics and Electronic Engineering, Linyi University, Linyi 276005, People's Republic of China

⁴Shandong Key Laboratory of Optical Communication Science and Technology, School of Physical Science and Information Technology, Liaocheng University, Liaocheng 252059, People's Republic of China

^{a)}Authors to whom correspondence should be addressed: jianfuli@ytu.edu.cn and xlwang@ytu.edu.cn

ABSTRACT

A structural search leads to the prediction of a novel alkaline earth nitride BeN_4 containing a square planar N_4^{2-} ring. This compound has a particular chemical bonding pattern giving it potential as a high-energy-density material. The *P4/nmm* phase of BeN_4 may be stable under ambient conditions, with a bandgap of 3.72 eV. It is predicted to have high thermodynamic and kinetic stability due to transfer of the outer-shell *s* electrons of the Be atom to the N₄ cluster, with the outer-shell 2*p* orbital accommodating the lone-pair electrons of N_4^{2-} . The total of six π electrons is the most striking feature, indicating that the square planar N_4^{2-} exhibits aromaticity. Under ambient conditions, BeN₄ has a high energy density (3.924 kJ/g relative to Be₃N₂ and N₂ gas), and its synthesis might be possible at pressures above 31.6 GPa.

© 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http:// creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0084802

I. INTRODUCTION

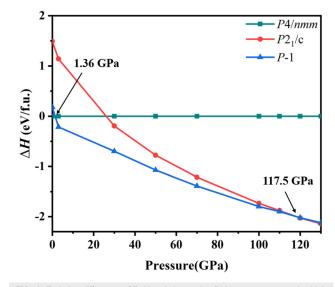
Polymeric nitrogen containing single and double nitrogen bonds releases a large amount of energy during its decomposition and is thus a candidate green high-energy-density material (HEDM). However, the synthesis of stable HEDMs containing breakable single or double nitrogen bonds poses a real challenge. To date, there has been experimental confirmation of four polymeric nitrogen structures: cg-N (synthesized at 2000 K and 110 GPa),¹ LP-N (3000 K and 150 GPa),² HLP-N (3300 K and 244 GPa),³ and bp-N (2200 K and 146 GPa).⁴ However, these structures are synthesized under high temperatures and pressures, which limits their application as HEDMs. Therefore, it is an urgent, although formidable, challenge to explore novel polymeric nitrogen structures that can be synthesized under mild conditions.

Numerous theoretical and experimental results have indicated that the addition of metallic elements (M) to the nitrogen materials could provide new compound forms of polymeric nitrogen (MN_x) at lower pressures. Compared with pure polymeric nitrogen structures, these may have higher stability and milder synthesis conditions. Charge transfer from metal to polynitrogen may play important roles in reducing the pressure required for synthesis and improving Ba, Se, He, or Xe, with x = 3, 5, 6, 10) featuring a variety of N₅ or N₆ polymeric nitrogen chains⁵⁻³⁰ and some complicated nitrogen clusters [fused N₁₈ rings in KN₈ (Ref. 8) and N₁₀ rings in BeN₄ (Ref. 29), etc.]. The transition metals (Sc, ^{31,32} Mo, ³³ Tc, ³⁴ Re, ³⁵ Fe, ^{36,37} Ru, ³⁸ Os, ³⁹ Rh, ⁴⁰ Ir, ³⁹ Pd, ⁴¹ Pt, ⁴¹ Cu, ⁴² Ag, ⁴³ Au, ⁴⁴ Zn, ⁴⁵ and Hg⁴⁶) can also form nitrogen-containing structures. Some of these compounds are not potential HEDMs, but they do prove that introducing metallic elements to nitrogen seems to be a feasible way to enhance metastability. Experimentally, some metals or their compounds have been used as raw materials to synthesize polynitrogen compounds at relatively low pressures. CsN5 has been successfully synthesized by compressing CsN₃ with N₂ near 60 GPa,⁴⁷ and solid LiN₅ solid has been obtained by compression and laser heating of Li embedded in molecular N2 at 45 GPa.⁴⁸ Fe₃N2, FeN2, and FeN4 have been synthesized from Fe and N_2 under different pressures,⁴⁹ and elemental Cu reacts with N₂ to form CuN₂ at 50 GPa.⁵⁰ Very recently, a beryllium tetranitride tr-BeN4 in the triclinic phase has been synthesized at 85 GPa,⁵¹ and it has similar structural units as the previously predicted P-1 BeN₄ (infinite N chains coordinating Be atoms),

structural stability. Theoretical calculations have predicted a variety of polynitride compounds MN_x (M = Li, Be, Na, Mg, Al, K, Ca, Cs, Rb,

proving that crystal structure prediction (CSP) searches can provide credible results.

The alkaline earth metals Be, Mg, Ca, Sr, and Ba are adjacent to the alkali metals in the Periodic Table, with similar properties but with a wider scope for chemical reactions and compound formation because of their additional valence electron. Among the alkaline earths, Be has the lowest atomic weight, and therefore its compounds with nitrogen have a high mass density of N and are good candidate HEDMs. A layered material, BeN₄, containing corrugated N₁₀ rings has recently been synthesized.⁵ Such a single-bonded polymeric nitrogen network has been predicted theoretically.^{29,52} Therefore, we have used an unbiased structural search with a particle-swarm optimization (PSO) algorithm^{53,54} to predict new beryllium nitrides with 1:4 compositions and have thereby found a new BeN₄ compound that may be stable at ambient pressure. In this compound, a planar N₄²⁻ ring is surrounded by four Be atoms, and the six π electrons of this ring conform to the Hückel [4*n* + 2] rule (with *n* = 1), indicating aromaticity of BeN4. The large mass ratio of nitrogen in this compound (86.15%) leads to a high energy density (3.924 kJ/g).


II. COMPUTATIONAL DETAILS

We used the Crystal Structure Analysis by Particle Swarm Optimization (CALYPSO) code^{53,54} to search the structures of BeN₄ at different pressures, namely, 0, 10, 20, 50, and 100 GPa, at 0 K. Geometrical optimizations, total energy calculations, and electronic structure calculations were carried out in the framework of density functional theory (DFT) using the generalized gradient approximation with the Perdew-Burke-Ernzerhof functional (GGA-PBE),⁵⁶ with a cutoff energy of 500 eV and a 0.03 Å⁻¹ k-point grid⁵⁶ in the Vienna Ab initio Simulation Package (VASP).⁵⁷ The convergence threshold was used to optimize the atomic positions and lattice constants until the forces on each atom were less than 0.01 eV/Å and the energy change was less than 1.0×10^{-6} eV/atom. Projector augmented wave $(PAW)^{58}$ pseudopotentials were adopted for Be and N, with $1s^22s^2$ and $2s^22p^3$ valence states, respectively. Phonon dispersion relations were calculated using a supercell method with the finite displacement approach⁵⁹ through the Phonopy code.⁶⁰ Ab initio molecular dynamics (AIMD) simulations were performed within the NVE ensemble^{61,62} to study thermal stability. The strain-stress methodology was used to calculate the elastic constants. The bulk and shear modulus, Young's modulus E, and Poisson's ratio v were obtained from the Voigt-Reuss-Hill approximations.⁶³ The detonation velocity and pressure were calculated through the Kamlet-Jacobs semiempirical equations $V_d = 1.01(NM^{0.5}E_d^{0.5})^{0.5}(1 + 1.30\rho)$ and $P_d = 15.58\rho^2 NM^{0.5}E_d^{64,65}$ where N is the number of moles of gas per gram, M is the molar mass of the N₂ gas (28 g/mol), E_d is the energy density, and ρ is the mass density of BeN₄. The crystal orbital Hamilton population (COHP) was calculated to characterize the bonding properties using the LOBSTER program.⁶⁶ Charge transfer was based on a Bader analysis,^{56,67} and the chemical bonding mode was calculated by the Solid State Adaptive Natural Density Partitioning (SSAdNDP) method.68

III. RESULTS AND DISCUSSION

A. Geometric structures

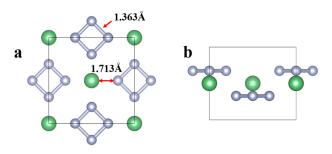

In a previous study, Zhang *et al.*²⁹ used an unbiased structure search method to explore the structural evolutionary behaviors of

FIG. 1. Enthalpy difference of BeN₄ relative to the *P*4/*nmm* structure under high pressure. *P*1-BeN₄ and *P*2₁/c- BeN₄ are previously known high-pressure structures from Ref. 29. The phase transition pressures are indicated by the arrows.

beryllium polynitride compounds below 200 GPa. Interestingly, the only stable N-rich composition was found to be BeN₄, with the compounds *P*1-BeN₄ and *P*2₁/c-BeN₄ being theoretically predicted to exist at high pressure. In our work, also using an unbiased structure search method with CALYPSO, we have predicted a new BeN₄ in the tetragonal phase with the high group symmetry of *P*4/*nmm*. The calculated enthalpies of these three structures at pressures from 0 to 130 GPa at *T* = 0 K are shown in Fig. 1.

BeN₄ undergoes structural phase transitions first from P4/nmm to P1 at a pressure of 1.36 GPa and then to $P2_1/c$ at 117.5 GPa. The phase transition pressure from P1 to $P2_1/c$ phase that we calculated is similar to the reported value (115.1 GPa) in Fig. 1, which indicates that our method is appropriate. The predicted crystal structure of P4/nmm and its corresponding lattice parameters and atomic coordinates are shown in Fig. 2 and Table I, respectively. According to Fig. 2, there is a square planar N₄^{2–} ring in P4/nmm-BeN₄, where each inner N atom is shared by one Be atom and two adjacent N atoms. Within the *cyclo*-N₄, the

FIG. 2. Crystal structure of the stable P4/nmm-BeN₄ at ambient pressure: (a) side view along *c* axis; (b) a axis. The green spheres are Be atoms and the gray spheres N atoms.

Space group	Pressure (GPa)	Lattice parameter (Ű)	Atom	Wyckoff position	x	у	z
P4/nmm	0	$a = 5.03 \alpha = 90.00$ $b = 5.03 \beta = 90.00$		4e		0.500	
	-	$b = 5.03 \beta = 90.00$ $c = 4.21 \gamma = 90.00$	Ν	16k		0.692	

TABLE I. Lattice parameters and atomic positions for *P*4/*nmm*-BeN₄ at 0 GPa.

length of the N–N bond is 1.363 Å and the angles of the N–N–N bonds are all around 90° at ambient pressure. Be atoms are situated at the center or vertex positions, with each Be atom binding to four adjacent N atoms with equal bond lengths of 1.713 Å. A variety of N₄ clusters have been predicted theoretically,^{24,30,69–71} including N₄⁴⁻, N₄²⁺, N₄²⁻, and N₄⁴. However, the novel square planar N₄²⁻ ring predicted in the present work has not previously been reported, although a square planar N₄²⁻ ring was found in bipyramidal Li₂N₄ by van Zandwijk *et al.*,⁷² and a series of alkali metal compounds M₂N₄ and alkaline earth compounds MN₄ with D_{4h} bipyramidal, D_{2h} planar, and C_{2v} planar structures were also found to contain such an N₄²⁻ ring.^{70,71,73} Here, we shall now focus on the square planar N₄²⁻ ring in P4/*nmm*-BeN₄.

B. Kinetic and thermodynamic stability

Because there are no imaginary frequencies in the entire Brillouin zone (Fig. 3), the calculated phonon dispersions show that P4/*nmm*-BeN₄ is dynamically stable at ambient pressure. In addition, the phonon density of states shows that the low-frequency vibrational mode can be mostly attributed to the strong coupling vibration between Be and N atoms, while the N–N stretching mode is responsible for the high-frequency vibrational mode.

We further explore the thermal stability of BeN₄ at ambient pressure and high temperature by performing AIMD simulations on a $3 \times 2 \times 3$ supercell containing 180 atoms. The images of the geometrical structure in Figs. 4(a) and 4(b) clearly reveal that the square planar N₄²⁻ ring maintains its structural integrity without any visible

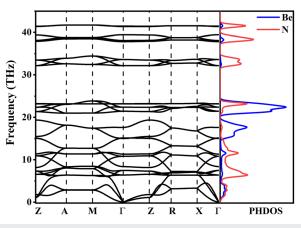
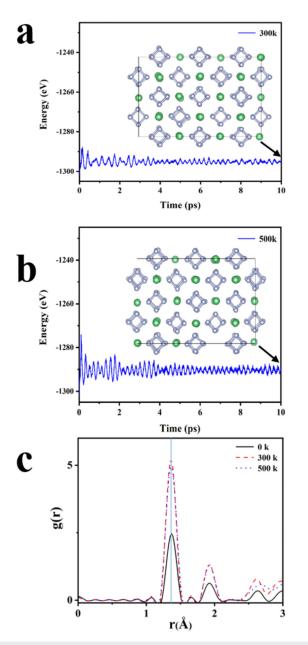


FIG. 3. Phonon dispersions and phonon density of states (PHDOS) of $P4/nmm-BeN_4$ at ambient pressure.


distortion after heating at 300 or 500 K for 10 ps with a time step of 1 fs. The radial distribution function (RDF) of N–N separations in P4/nmm-BeN₄ is shown in Fig. 4(c). The first sharp RDF peak is the average distance between the selected atom and its nearest surrounding atoms, here corresponding to the N–N bonds of BeN₄. This indicates that the N–N bond lengths remain at 1.369 Å as the temperature rises from zero to 500 K, which proves the stability of P4/nmm-BeN₄ at high temperatures. Thus, BeN₄ has a moderate cohesive energy and good thermal stability.

C. Mechanical stability

We also calculated the elastic constants of the P4/nmm-BeN4 structure because these are helpful for determining the mechanical stability and hardness of a material. The elastic constants C_{ij} , bulk modulus B, shear modulus G, the Young's modulus E and Poisson's ratio v of P4/nmm-BeN₄ are presented in Table II. They are related by E = 9BG/(3B + G) and $v = (3B - 2G)/[2(3B + G)]^{.74}$ We calculated the bulk modulus of the β -Be₃N₂ hexagonal structure at ambient pressure to be B = 237.18 GPa, which is similar to a previously published value for this compound (236 GPa),⁷⁵ which indicates that the calculation method we have adopted is appropriate for the Be-N system. The Pugh ratio k = B/G is used to estimate ductile or brittle characteristics, with *k* < 1.75 corresponding to brittle behavior and *k* \ge 1.75 to ductile behavior. The value of k for the P4/nmm-BeN₄ structure is 1.02, indicating that this compound is brittle. For a tetragonal structure to be stable, the C_{ii} should satisfy the Born-Huang stability criteria $C_{11} > 0, C_{33} > 0, C_{44} > 0, C_{66} > 0, C_{11} - C_{12} > 0, C_{11} + C_{33} - 2C_{13} > 0$, and $2(C_{11} + C_{12}) + C_{33} + 4C_{13} > 0$. The elastic constants of P4/nmm-BeN₄ satisfy these criteria, indicating that it should be mechanically stable under ambient conditions.

D. Explosive performance

Energy density E_d is important for energy storage capability, while detonation velocity V_d and pressure P_d are known to be significant indices of detonation performance. The dissociation energy of P4/nmm-BeN₄ is calculated for the following decomposition path under ambient conditions: $3\text{BeN}_4(s) \rightarrow \text{Be}_3\text{N}_2(s) + 5\text{N}_2(g)$. We use $E_d = (96.4853 \times \text{BeN}_4 \text{ molecule energy released})/(\text{molar mass of}$ BeN₄) to calculate the energy density of P4/nmm-BeN₄, the calculated E_d is about 3.92 kJ/g with reference to the lowest-energy phase at ambient pressure^{29,76} (the phase transition in Fig. S1 in the supplementary material). Table III compares the detonation properties of P4/nmm-BeN₄ with the experimental values for TNT and HMX. Although P4/nmm-BeN₄ shows superiority only with regard to

FIG. 4. Molecular dynamics simulations and radial distribution function of *P4/nmm*-BeN₄. (a) and (b) Equilibrium structures at 10 ps and fluctuations of the total potential energies during the AIMD simulation at temperatures of 300 and 500 K, respectively. (c) RDF for N–N separations.

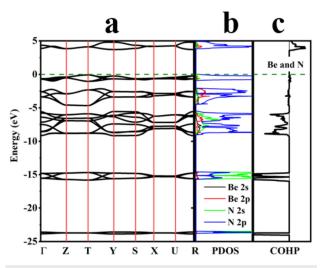
its detonation velocity being higher than that of TNT, its detonation performance does indicate that it has potential application as an explosive.

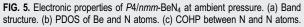
E. Electronic properties

To illustrate the electronic properties of BeN_4 , its band structure, projected density of states (PDOS), and crystal orbital Hamilton

		P4/nmm	Be ₃ N ₂
Elastic stiffness constants C_{ij}	<i>C</i> ₁₁	224.82	517.77
,	C_{22}		
	C_{33}	20.82	479.98
	C_{44}	111.15	190.16
	C_{55}	2.29	
	C_{66}	2.29	185.58
	C_{12}	6.21	137.45
	C_{13}	20.32	87.57
B (GPa)		41.75	237.18
G (GPa)		41.06	192.14
E (GPa)		92.78	453.87
ν		0.13	0.18
k		1.02	

TABLE III. Detonation properties of P4/nmm-BeN₄, TNT, and HMX.

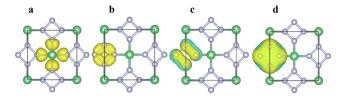

Compound	$\rho (g/cm^3)$	E_d (kJ/g)	V_d (km/s)	P_d (kbar)
P4/nmm-BeN ₄	1.01	3.92	7.35	158.11
TNT	1.64 ^a	4.30 ^b	6.90°	190.00 ^a
HMX	1.90 ^a	5.70 ^b	9.10°	393.00 ^a


^aReference 77.

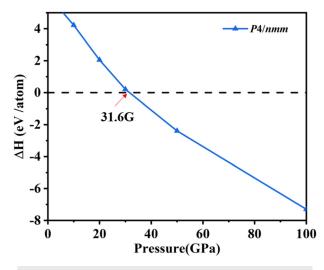
^bReference 78.

^cReference 79.

populations (COHPs) under ambient conditions are presented in Fig. 5. There are no bands crossing the Fermi level in the band structure in Fig. 5(a), which indicates that the predicted BeN_4 crystal is a semiconductor with a bandgap of 3.67 eV. The obvious overlap between Be 2p and N 2p in the PDOS [Fig. 5(b)] reveals that the orbitals are strongly hybridized.



Therefore, the bonding between Be and N is partially covalent. To characterize the orbital interaction between two N atoms, we performed a COHP analysis to measure the overlap strength between two N atoms. Negative values correspond to bonding states and positive values to antibonding states in Fig. 5(c), where it can be seen that the bonding states between N and N in BeN4 are completely occupied and the antibonding states partially occupied, resulting in strong covalent bonding. The integrated COHPs (ICOHPs) calculated from the wave function's energy-weighted population between two atomic orbitals represent the bonding strength. The ICOHP values of N-N and Be-N bonds are -12.21 and -1.63 eV, respectively. Therefore, the N-N interaction is substantially stronger than the Be-N interaction, which indicates that the covalent bonding between Be and N is weaker, which is consistent with the results of our previous hybridization investigation. Moreover, the Bader charges of Be and N atoms shown in Table S1 in the supplementary material reveal that the Be atoms combine with the N atoms primarily through electrostatic forces. Thus, the Be-N bonding has both covalent and ionic character.


F. Chemical bonding pattern

We analyzed the chemical bonding patterns in the *P4/nmm*-BeN₄ crystal using SSAdNDP software. In a primitive cell, Be atoms connect four neighboring N₄ rings via four two-center, two-electron (2c-2e) Be–N σ bonds [Fig. 6(a)], and four N atoms form a ring through four 2c-2e N–N σ bonds [Fig. 6(b)]. There are two types of π orbital [Figs. 6(c) and 6(d)]: one links two adjacent N atoms through two 2c-2e N–N π bonds, while the other links four N atoms via one four-center, two-electron (4c-2e) N–N large π bond in a plane. Together, the σ and π bonds require 2 × 11 = 22 electrons, which is equal to the number of outer valence electrons of BeN₄. It can be seen that the localized 2c-2e σ bonds, 2c-2e π bonds, and delocalized 4c-2e π bonds have an influence on the high structural stability of BeN₄. The total of six π electrons is the most striking feature, since it satisfies the Hückel [4*n* + 2] rule (with *n* = 1), indicating that BeN₄ is an aromatic structure.

The band structure, PDOS, COHP calculations, and chemical bonding pattern analysis illustrate the covalent bonding between the N atoms. The Be atoms contribute their outer-shell electrons to the N_4 cluster and use the outer-shell 2*p* orbital to accommodate the lone-pair electrons of N_4^{2-} , with the formation of covalent and ionic bonds to stabilize the crystal. This explains why Be can stabilize the square N_4 ring.

FIG. 6. SSAdNDP-derived chemical bonding pattern of *P4/nmm*-BeN₄ at ambient pressure: (a) $4 \times 2c$ -2e Be–N σ bonds, ON = 1.65|e|, iso-value = 0.15; (b) $4 \times 2c$ -2e N–N σ bonds, ON = 1.65|e|, iso-value = 0.2; (c) $2 \times 2c$ -2e N–N π bonds, ON = 1.65|e|, iso-value = 0.1; (d) $1 \times 4c$ -2e N–N large π bond, ON = 1.70|e|, iso-value = 0.03.

FIG. 7. Enthalpy of formation of P4/nmm-BeN₄ relative to Be₃N₂ and N₂.

G. Synthetic route to square planar N₄²⁻ ring

Be₃N₂ with two known phases ($\alpha^{80,81}$ and β^{82}) has been experimentally synthesized. We have calculated the enthalpy of formation of the predicted P4/nmm-BeN4 relative to Be3N2 and N2 (the phase transition in Fig. S1 in the supplementary material) to find a possible high-pressure synthetic path. Based on the results in Fig. 7, the predicted BeN_4 can be synthesized through mixing Be_3N_2 and N_2 together at pressures above 31.6 GPa, which indicates that square planar N_4^{2-} can be synthesized beyond 31.6 GPa. It should be noted that both the $P2_1/c$ and P-1 phases have lower energies than the P4/nmm phase above 31.6 GPa (Fig. 1), which makes the synthesis of P4/ nmm-BeN₄ a difficult task. Fortunately, a number of experimental results achieved with high-pressure techniques can provide inspiration for the synthesis of P4/nmm-BeN₄. The recently synthesized bp-N is not the phase with the lowest energy at the corresponding pressure.^{4,83} Similarly, silicon and ice can form different phases along different pressure-temperature paths.^{84,85} We anticipate that experimental investigations will also find the precise pressure and temperature conditions for the synthesis of P4/nmm-BeN₄.

IV. CONCLUSIONS

Through structural searches and density functional calculations under ambient conditions, we have found a P4/nmm-BeN₄ structure with high kinetic and thermodynamic stability. The phonon dispersion and electronic properties of this structure indicate the presence of covalent bonding between two N atoms, with covalent and ionic bonding between Be²⁺ and square planar N₄²⁻ enhancing the stability of the semiconductor BeN₄ structure. The total of six π electrons satisfies the Hückel [4*n* + 2] rule (with *n* = 1), indicating that BeN₄ has an aromatic structure. Furthermore, the energy density of P4/nmm-BeN₄ is 3.92 kJ/g, making it a candidate high-energy-density material. The calculated formation of enthalpy of BeN₄ indicates that the square planar N₄²⁻ ring might be synthesized through mixing Be₃N₂ and N₂ at 31.6 GPa. The results of this investigation of the role of novel chemical bonds in nitrogen chemistry should encourage experimental efforts to synthesize these promising high-energy materials.

SUPPLEMENTARY MATERIAL

See the supplementary material for Figure S1 and Table S1.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China under Grant Nos. 11974154, 11674144, and 11604133, and the Natural Science Foundation of Shandong Province under Grant Nos. ZR2018MA038, 2019GGX103023, Z2018S008, and 2019KJJ019.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

DATA AVAILABILITY

All data discussed in the paper are available upon request.

REFERENCES

¹M. I. Eremets, A. G. Gavriliuk, I. A. Trojan, D. A. Dzivenko, R. Boehler, and R. Academy, "Single-bonded cubic form of nitrogen," Nat. Mater. 3, 558-563 (2004). ²D. Tomasino, M. Kim, J. Smith, and C. S. Yoo, "Pressure-induced symmetrylowering transition in dense nitrogen to layered polymeric nitrogen (LP-N) with colossal Raman intensity," Phys. Rev. Lett. 113, 205502 (2014).

³D. Laniel, G. Geneste, G. Weck, M. Mezouar, and P. Loubeyre, "Hexagonal layered polymeric nitrogen phase synthesized near 250 GPa," Phys. Rev. Lett. 122, 066001 (2019).

⁴C. Ji, A. A. Adeleke, L. Yang, B. Wan, H. Gou, Y. Yao, B. Li, Y. Meng, J. S. Smith, V. B. Prakapenka, W. Liu, G. Shen, W. L. Mao, and H. K. Mao, "Nitrogen in black phosphorus structure," Sci. Adv. 6, eaba9206 (2020).

⁵Q. Wei, C. Zhao, M. Zhang, H. Yan, B. Wei, and X. Peng, "New stable structures of HeN3 predicted using first-principles calculations," J. Alloys Compd. 800, 505-511 (2019).

⁶Z. Liu, D. Li, S. Wei, W. Wang, F. Tian, K. Bao, D. Duan, H. Yu, B. Liu, and T. Cui, "Bonding properties of aluminum nitride at high pressure," Inorg. Chem. 56, 7494-7500 (2017).

⁷Z. Liu, D. Li, S. Wei, Y. Liu, F. Tian, D. Duan, and T. Cui, "Nitrogen-rich GaN₅ and GaN₆ as high energy density materials with modest synthesis condition," Phys. Lett. A 383, 125859 (2019).

⁸B. A. Steele and I. I. Oleynik, "Novel potassium polynitrides at high pressures," J. Phys. Chem. A 121, 8955-8961 (2017).

⁹M. Zhang, H. Yan, Q. Wei, and H. Liu, "A new high-pressure polymeric nitrogen phase in potassium azide," RSC Adv. 5, 11825-11830 (2015).

10 Y. Shen, A. R. Oganov, G. Qian, J. Zhang, H. Dong, Q. Zhu, and Z. Zhou, "Novel lithium-nitrogen compounds at ambient and high pressures," Sci. Rep. 5, 14204 (2015).

¹¹P. Hou, L. Lian, Y. Cai, B. Liu, B. Wang, S. Wei, and D. Li, "Structural phase transition and bonding properties of high-pressure polymeric CaN₃," RSC Adv. 8, 4314-4320 (2018).

¹²A. S. Williams, B. A. Steele, and I. I. Oleynik, "Novel rubidium poly-nitrogen materials at high pressure," J. Chem. Phys. 147, 234701 (2017).

13S. Wei, D. Li, Z. Liu, X. Li, F. Tian, D. Duan, B. Liu, and T. Cui, "Alkaline-earth metal (Mg) polynitrides at high pressure as possible high-energy materials," Phys. Chem. Chem. Phys. 19, 9246-9252 (2017).

14L. Zhang, Y. Wang, J. Lv, and Y. Ma, "Materials discovery at high pressures," Nat. Rev. Mater. 2, 17005 (2017).

15W. Wang, H. Wang, Y. Liu, D. Li, F. Tian, D. Duan, H. Yu, and T. Cui, "Highpressure bonding mechanism of selenium nitrides," Inorg. Chem. 58, 2397-2402 (2019).

¹⁶F. Peng, Y. Wang, H. Wang, Y. Zhang, and Y. Ma, "Stable xenon nitride at high pressures," Phys. Rev. B 92, 094104 (2015).

17B. Huang and G. Frapper, "Barium-nitrogen phases under pressure: Emergence of structural diversity and nitrogen-rich compounds," Chem. Mater. 30, 7623-7636 (2018).

¹⁸J. Lin, Z. Zhu, Q. Jiang, S. Guo, J. Li, H. Zhu, and X. Wang, "Stable zigzag and tripodal all-nitrogen anion N₄⁴⁻ in BeN₂," AIP Adv. 9, 055116 (2019).

¹⁹F. Peng, Y. Yao, H. Liu, and Y. Ma, "Crystalline LiN5 predicted from firstprinciples as a possible high-energy material," J. Phys. Chem. Lett. 6, 2363-2366 (2015).

²⁰L. C. Perera, O. Raymond, W. Henderson, P. J. Brothers, and P. G. Plieger, "Advances in beryllium coordination chemistry," Coord. Chem. Rev. 352, 264-290 (2017).

²¹S. B. Schneider, M. Mangstl, G. M. Friederichs, R. Frankovsky, J. Schmedt auf der Günne, and W. Schnick, "Electronic and ionic conductivity in alkaline earth diazenides $M_{AE}N_2$ ($M_{AE}\,=\,$ Ca, Sr, Ba) and in Li_2N_2," Chem. Mater. 25, 4149-4155 (2013).

 $^{\mathbf{22}}$ S. B. Schneider, R. Frankovsky, and W. Schnick, "Synthesis of alkaline earth diazenides MAEN2 (MAE = Ca, Sr, Ba) by controlled thermal decomposition of azides under high pressure," Inorg. Chem. 51, 2366-2373 (2012).

²³S. Yu, B. Huang, Q. Zeng, A. R. Oganov, L. Zhang, and G. Frapper, "Emergence of novel polynitrogen molecule-like species, covalent chains, and layers in magnesium-nitrogen Mg_xN_y phases under high pressure," J. Phys. Chem. C 121, 11037-11046 (2017).

²⁴F. Peng, Y. Han, H. Liu, and Y. Yao, "Exotic stable cesium polynitrides at high pressure," Sci. Rep. 5, 16902 (2015). ²⁵X. Wang, J. Li, N. Xu, H. Zhu, Z. Hu, and L. Chen, "Layered polymeric nitrogen in

RbN₃ at high pressures," Sci. Rep. 5, 16677 (2015).

²⁶X. Wang, J. Li, H. Zhu, L. Chen, and H. Lin, "Polymerization of nitrogen in cesium" azide under modest pressure," J. Chem. Phys. 141, 044717 (2014).

²⁷X. Wang, J. Li, J. Botana, M. Zhang, H. Zhu, L. Chen, H. Liu, T. Cui, and M. Miao, "Polymerization of nitrogen in lithium azide," J. Chem. Phys. 139, 164710 (2013). 28 Y. Li, X. Feng, H. Liu, J. Hao, S. A. T. Redfern, W. Lei, D. Liu, and Y. Ma, "Route to

high-energy density polymeric nitrogen t-N via He-N compounds," Nat. Commun. 9, 722 (2018).

 ${}^{\mathbf{29}}$ S. Zhang, Z. Zhao, L. Liu, and G. Yang, "Pressure-induced stable BeN_4 as a highenergy density material," J. Power Sources 365, 155-161 (2017).

30 S. Zhu, F. Peng, H. Liu, A. Majumdar, T. Gao, and Y. Yao, "Stable calcium nitrides at ambient and high pressures," Inorg. Chem. 55, 7550-7555 (2016).

³¹J. Lin, D. Peng, Q. Wang, J. Li, H. Zhu, and X. Wang, "Stable nitrogen-rich scandium nitrides and their bonding features under ambient conditions," Phys. Chem. Chem. Phys. 23, 6863-6870 (2021).

 $^{\bf 32}$ M. A. Aslam and Z. J. Ding, "Prediction of thermodynamically stable compounds of the Sc-N system under high pressure," ACS Omega 3, 11477-11485 (2018).

33L.-P. Ding, P. Shao, F.-H. Zhang, C. Lu, and X.-F. Huang, "Prediction of molybdenum nitride from first-principle calculations: Crystal structures, electronic properties, and hardness," J. Phys. Chem. C 122, 21039-21046 (2018).

34Y.-R. Zhao, G.-T. Zhang, H.-Y. Yan, T.-T. Bai, B.-B. Zheng, and Y.-Q. Yuan, "First-principles investigations of the structure and physical properties for new TcN crystal structure," Mol. Phys. 114, 1952-1959 (2016).

35 Q. Wei, C. Zhao, M. Zhang, H. Yan, and B. Wei, "High-pressure phases and pressure-induced phase transition of MoN₆ and ReN₆," Phys. Lett. A 383, 2429-2435 (2019).

 ${}^{\bf 36}$ Y. Chen, X. Cai, H. Wang, H. Wang, and H. Wang, "Novel triadius-like $\rm N_4$ specie of iron nitride compounds under high pressure," Sci. Rep. 8, 10670 (2018).

37 L. Wu, R. Tian, B. Wan, H. Liu, N. Gong, P. Chen, T. Shen, Y. Yao, H. Gou, and F. Gao, "Prediction of stable iron nitrides at ambient and high pressures with progressive formation of new polynitrogen species," Chem. Mater. 30, 8476-8485 (2018).

³⁸K. Niwa, K. Suzuki, S. Muto, K. Tatsumi, K. Soda, T. Kikegawa, and M. Hasegawa, "Discovery of the last remaining binary platinum-group pernitride RuN2," Chem. Eur. J. 20, 13885-13888 (2014).

³⁹A. F. Young, C. Sanloup, E. Gregoryanz, S. Scandolo, R. J. Hemley, and H. K. Mao, "Synthesis of novel transition metal nitrides IrN2 and OsN2," Phys. Rev. Lett. 96, 155501 (2006).

⁴⁰K. Niwa, D. Dzivenko, K. Suzuki, R. Riedel, I. Troyan, M. Eremets, and M. Hasegawa, "High pressure synthesis of marcasite-type rhodium pernitride," Inorg. Chem. 53, 697–699 (2014).

⁴¹J. C. Crowhurst, A. F. Goncharov, B. Sadigh, C. L. Evans, P. G. Morrall, J. L. Ferreira, and A. J. Nelson, "Synthesis and characterization of the nitrides of platinum and iridium," *Science* **311**, 1275–1278 (2006).

⁴²J. Li, L. Sun, X. Wang, H. Zhu, and M. Miao, "Simple route to metal *cyclo*-N₅⁻ salt: High-pressure synthesis of CuN₅," J. Phys. Chem. C **122**, 22339–22344 (2018).

⁴³C. L. Schmidt, R. Dinnebier, U. Wedig, and M. Jansen, "Crystal structure and chemical bonding of the high-temperature phase of AgN₃," Inorg. Chem. 46, 907–916 (2007).

⁴⁴S. Krishnamurthy, M. Montalti, M. G. Wardle, M. J. Shaw, P. R. Briddon, K. Svensson, M. R. C. Hunt, and L. Šiller, "Nitrogen ion irradiation of Au(110): Photoemission spectroscopy and possible crystal structures of gold nitride," Phys. Rev. B **70**, 045414 (2004).

⁴⁵J. H. Tian, T. Song, X. W. Sun, T. Wang, and G. Jiang, "Theoretical investigation on the high-pressure physical properties of ZnN in cubic zinc blende, rock salt, and cesium chloride structures," J. Phys. Chem. Solids **110**, 70–75 (2017).

⁴⁶S. Guo, J. Lin, J. Li, Q. Wang, H. Wu, H. Zhu, and X. Wang, "High-pressure stable phases in mercury azide," Comput. Mater. Sci. 169, 109147 (2019).

⁴⁷B. A. Steele, E. Stavrou, J. C. Crowhurst, J. M. Zaug, V. B. Prakapenka, and I. I. Oleynik, "High-pressure synthesis of a pentazolate salt," Chem. Mater. **29**, 735–741 (2017).

⁴⁸D. Laniel, G. Weck, G. Gaiffe, G. Garbarino, and P. Loubeyre, "High-pressure synthesized lithium pentazolate compound metastable under ambient conditions," J. Phys. Chem. Lett. **9**, 1600–1604 (2018).

⁴⁹M. Bykov, E. Bykova, G. Aprilis, K. Glazyrin, E. Koemets, I. Chuvashova, I. Kupenko, C. McCammon, M. Mezouar, V. Prakapenka, H. P. Liermann, F. Tasnádi, A. V. Ponomareva, I. A. Abrikosov, N. Dubrovinskaia, and L. Dubrovinsky, "Fe-N system at high pressure reveals a compound featuring polymeric nitrogen chains," Nat. Commun. 9, 2756 (2018).

⁵⁰J. Binns, M.-E. Donnelly, M. Peña-Alvarez, M. Wang, E. Gregoryanz, A. Hermann, P. Dalladay-Simpson, and R. T. Howie, "Direct reaction between copper and nitrogen at high pressures and temperatures," J. Phys. Chem. Lett. 10, 1109–1114 (2019).

⁵¹M. Bykov, T. Fedotenko, S. Chariton, D. Laniel, K. Glazyrin, M. Hanfland, J. S. Smith, V. B. Prakapenka, M. F. Mahmood, A. F. Goncharov, A. V. Ponomareva, F. Tasnádi, A. I. Abrikosov, T. Bin Masood, I. Hotz, A. N. Rudenko, M. I. Katsnelson, N. Dubrovinskaia, L. Dubrovinsky, and I. A. Abrikosov, "High-pressure synthesis of Dirac materials: Layered van der Waals bonded BeN₄ polymorph," Phys. Rev. Lett. **126**, 175501 (2021).

⁵²S. Wei, D. Li, Z. Liu, W. Wang, F. Tian, K. Bao, D. Duan, B. Liu, and T. Cui, "A novel polymerization of nitrogen in beryllium tetranitride at high pressure," J. Phys. Chem. C 121, 9766–9772 (2017).

⁵³Y. Wang, J. Lv, L. Zhu, and Y. Ma, "CALYPSO: A method for crystal structure prediction," Comput. Phys. Commun. **183**, 2063–2070 (2012).

⁵⁴Y. Wang, J. Lv, L. Zhu, and Y. Ma, "Crystal structure prediction via particleswarm optimization," Phys. Rev. B **82**, 094116 (2010).

⁵⁵J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett. 77, 3865–3868 (1996).

⁵⁶J. D. Pack and H. J. Monkhorst, "Special points for Brillouin-zone integrations'— A reply," Phys. Rev. B 16, 1748–1749 (1977).

⁵⁷G. Kresse and J. Furthmüller, "Efficient iterative schemes for *ab initio* totalenergy calculations using a plane-wave basis set," Phys. Rev. B 54, 11169–11186 (1996).

⁵⁸P. E. Blöchl, "Projector augmented-wave method," Phys. Rev. B **50**, 17953–17979 (1994).

⁵⁹K. Parlinski, Z. Q. Li, and Y. Kawazoe, "First-principles determination of the soft mode in cubic ZrO₂," Phys. Rev. Lett. **78**, 4063–4066 (1997).

⁶⁰A. Togo, F. Oba, and I. Tanaka, "First-principles calculations of the ferroelastic transition between rutile-type and CaCl₂-type SiO₂ at high pressures," Phys. Rev. B 78, 134106 (2008).

⁶¹S. Nosé, "A unified formulation of the constant temperature molecular dynamics methods," J. Chem. Phys. **81**, 511–519 (1984).

⁶²W. G. Hoover, "Canonical dynamics: Equilibrium phase-space distributions," Phys. Rev. A 31, 1695–1697 (1985).

⁶³R. Hill, "Related content the elastic behaviour of a crystalline aggregate," Proc.
Phys. Soc., London, Sect. A 65, 349–354 (1952).

⁶⁴Q. Zhang and Y. Chang, "Prediction of detonation pressure and velocity of explosives with micrometer aluminum powders," Cent. Eur. J. Energ. Mater. 9, 77–86 (2012).

⁶⁵M. J. Kamlet and J. E. Ablard, "Chemistry of detonations. II. Buffered equilibria," J. Chem. Phys. 48, 36–42 (1968).

⁶⁶S. Maintz, V. L. Deringer, A. L. Tchougréeff, and R. Dronskowski, "LOBSTER: A tool to extract chemical bonding from plane-wave based DFT," J. Comput. Chem. 37, 1030–1035 (2016).

⁶⁷W. Tang, E. Sanville, and G. Henkelman, "A grid-based Bader analysis algorithm without lattice bias," J. Phys.: Condens. Matter **21**, 084204 (2009).

⁶⁸T. R. Galeev, B. D. Dunnington, J. R. Schmidt, and A. I. Boldyrev, "Solid state adaptive natural density partitioning: A tool for deciphering multi-center bonding in periodic systems," Phys. Chem. Chem. Phys. **15**, 5022 (2013).

 69 G. A. Olah, G. K. Surya Prakash, and G. Rasul, "N_6^+ and N_4^+ dications and their N₁₂ and N₁₀ azido derivatives: DFT/GIAO-MP2 theoretical studies," J. Am. Chem. Soc. **123**, 3308–3310 (2001).

 70 Q. S. Li and L. P. Cheng, "Aromaticity of square planar N_4^{2-} in the M_2N_4 (M = Li, Na, K, Rb, or Cs) species," J. Phys. Chem. A **107**, 2882–2889 (2003).

 71 L. P. Cheng and Q. S. Li, "N₄ ring as a square planar ligand in novel MN₄ species," J. Phys. Chem. A **109**, 3182–3186 (2005).

⁷²G. van Zandwijk, R. A. J. Janssen, and H. M. Buck, "6π aromaticity in fourmembered rings," J. Am. Chem. Soc. **112**, 4155–4164 (1990).

⁷³L. P. Cheng and Q. S. Li, "Theoretical study of nitrogen-rich BeN₄ compounds,"
J. Phys. Chem. A 108, 665–670 (2004).

⁷⁴Z. J. Wu, E. J. Zhao, H. P. Xiang, X. F. Hao, X. J. Liu, and J. Meng, "Crystal structures and elastic properties of superhard IrN₂ and IrN₃ from first principles," Phys. Rev. B **76**, 054115 (2007).

⁷⁵M. Moreno Armenta, A. Reyes-Serrato, and M. Avalos Borja, "Ab initio determination of the electronic structure of beryllium-, aluminum-, and magnesium-nitrides: A comparative study," Phys. Rev. B 62, 4890–4898 (2000).

⁷⁶C. J. Pickard and R. J. Needs, "High-pressure phases of nitrogen," Phys. Rev. Lett. 102, 125702 (2009).

⁷⁷M. J. Kamlet and C. Dickinson, "Chemistry of detonations. III. Evaluation of the simplified calculational method for Chapman-Jouguet detonation pressures on the basis of available experimental information," J. Chem. Phys. 48, 43 (1968).

⁷⁸J. Zhang, A. R. Oganov, X. Li, and H. Niu, "Pressure-stabilized hafnium nitrides and their properties," Phys. Rev. B **95**, 020103(R) (2017).

⁷⁹J. P. Agrawal, *High Energy Materials: Propellants, Explosives and Pyritechnics* (J. Stierstorfer and T. M. Klapötke, 2010).

⁸⁰G. T. Furukawa and M. L. Reilly, "Heat capacity and thermodynamic properties of α-beryllium nitride, Be_3N_2 , from 20 to 315 K," J. Res. Natl. Bur. Stand., Sect. A **74A**, 617–629 (1970).

 $^{\mathbf{81}}$ T. B. Douglas and W. H. Payne, "Measured enthalpy and derived thermodynamic properties of alpha beryllium nitride, Be_3N_2, from 273 to 1200 K," J. Res. Natl. Bur. Stand., Sect. A 73A, 471–477 (1969).

⁸²D. Hall, G. E. Gurr, and G. A. Jeffrey, "Zur kenntnis des systems Be_3N - Si_3N_4 , V. A refinement of the crystal structure of β-beryllium nitride," Z. Anorg. Allg. Chem. **369**, 108–112 (1969).

⁸³D. Laniel, B. Winkler, T. Fedotenko, A. Pakhomova, S. Chariton, V. Milman, V. Prakapenka, L. Dubrovinsky, and N. Dubrovinskaia, "High-pressure polymeric nitrogen allotrope with the black phosphorus structure," Phys. Rev. Lett. **124**, 216001 (2020).

⁸⁴C. Lin, X. Liu, X. Yong, J. S. Tse, J. S. Smith, N. J. English, B. Wang, M. Li, W. Yang, and H.-K. Mao, "Temperature-dependent kinetic pathways featuring distinctive thermal-activation mechanisms in structural evolution of ice VII," Proc. Natl. Acad. Sci. U. S. A. 117, 15437–15442 (2020).

⁸⁵C. Lin, X. Liu, D. Yang, X. Li, J. S. Smith, B. Wang, H. Dong, S. Li, W. Yang, and J. S. Tse, "Temperature- and rate-dependent pathways in formation of metastable silicon phases under rapid decompression," Phys. Rev. Lett. **125**, 155702 (2020).